Control of mammalian cochlear amplification by chloride anions.

نویسندگان

  • Joseph Santos-Sacchi
  • Lei Song
  • Jiefu Zheng
  • Alfred L Nuttall
چکیده

Chloride ions have been hypothesized to interact with the membrane outer hair cell (OHC) motor protein, prestin on its intracellular domain to confer voltage sensitivity (Oliver et al., 2001). Thus, we hypothesized previously that transmembrane chloride movements via the lateral membrane conductance of the cell, GmetL, could serve to underlie cochlear amplification in the mammal. Here, we report on experimental manipulations of chloride-dependent OHC motor activity in vitro and in vivo. In vitro, we focused on the signature electrical characteristic of the motor, the nonlinear capacitance of the cell. Using the well known ototoxicant, salicylate, which competes with the putative anion binding or interaction site of prestin to assess level-dependent interactions of chloride with prestin, we determined that the resting level of chloride in OHCs is near or below 10 mm, whereas perilymphatic levels are known to be approximately 140 mm. With this observation, we sought to determine the effects of perilymphatic chloride level manipulations of basilar membrane amplification in the living guinea pig. By either direct basolateral perfusion of the OHC with altered chloride content perilymphatic solutions or by the use of tributyltin, a chloride ionophore, we found alterations in OHC electromechanical activity and cochlear amplification, which are fully reversible. Because these anionic manipulations do not impact on the cation selective stereociliary process or the endolymphatic potential, our data lend additional support to the argument that prestin activity dominates the process of mammalian cochlear amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin.

The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (G(metL)) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and...

متن کامل

Cochlear amplification, outer hair cells and prestin.

Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...

متن کامل

A model of ionic transport and osmotic volume control in cochlear outer hair cells.

A computational model of the outer hair cell (OHC) of the mammalian cochlea is presented. It addresses the way in which movement of ions controls the cell shape and regulates pH. The model takes into account the possible chloride-bicarbonate exchange function of prestin, a protein highly expressed in the plasma membrane of OHCs. A model of intracellular pH transients following the imposition of...

متن کامل

A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity.

Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian...

متن کامل

Power Amplification in the Mammalian Cochlea

It was first suggested by Gold in 1948 [1] that the exquisite sensitivity and frequency selectivity of the mammalian cochlea is due to an active process referred to as the cochlear amplifier. It is thought that this process works by pumping energy to augment the otherwise damped sound-induced vibrations of the basilar membrane [2-4], a mechanism known as negative damping. The existence of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 15  شماره 

صفحات  -

تاریخ انتشار 2006